
Problem Computations Numerical Results

Systemizing the Solution of Simulation-Driven
Optimization Problems

Marco Enriquez
(joint work with William Symes)

Center for Advanced Aviation Systems Development (CAASD)
menriquez@mitre.org

November 21, 2013

National Institute of Standards and Technology (NIST)

M. Enriquez Systemizing the Solution of SDOs – 1

Problem Computations Numerical Results

Outline

Definition and Problem Statement

I Simulation-Driven Optimization [SDO] Problems

I Solution of the SDO Problem
I The Adjoint State Method

TSOpt (“Time Stepping for Optimization”) Framework

I Generic Approach to Solving SDO Problems

I TSOpt Components and Features
I Implementation variants of the Adjoint State Method

Numerical Results

I Solving the “Optimal Well Rate Allocation Problem” with TSOpt

Conclusion

M. Enriquez Systemizing the Solution of SDOs – 2

Problem Computations Numerical Results

Definition

A Simulation-Driven Optimization Problem:

[SD] min
c
f(c) =

∫ T

0

J(u(t), c)dt

where (u(t), c) solves:

d

dt
u(t) = H(u(t), c), t ∈ [0, T]

H ≡ 0 for t < 0

Where H is a dynamic operator, and:

c ∈ Rn ,
u ∈ C1([0, T]× Rn, U), for a state Hilbert space U ,

J : C1([0, T]× Rn, U)→ R

Hence f : Rn → R

M. Enriquez Systemizing the Solution of SDOs – 3

Problem Computations Numerical Results

Definition

A Simulation-Driven Optimization Problem:

[SD] min
c
f(c) =

∫ T

0

J(u(t), c)dt

where (u(t), c) solves:

d

dt
u(t) = H(u(t), c), t ∈ [0, T]

H ≡ 0 for t < 0

Where H is a dynamic operator, and:

c ∈ Rn ,
u ∈ C1([0, T]× Rn, U), for a state Hilbert space U ,

J : C1([0, T]× Rn, U)→ R

Hence f : Rn → R

M. Enriquez Systemizing the Solution of SDOs – 4

Problem Computations Numerical Results

Motivating Examples: Optimal Well Rate Allocation

Given a reservoir model, along with location of injection and production
wells, find the optimal well rates to maximize revenue

1Images courtesy of www.amerexco.com/recovery

M. Enriquez Systemizing the Solution of SDOs – 5

Problem Computations Numerical Results

Motivating Examples: Optimal Trajectories

Find the optimal aircraft trajectory that minimizes fuel and/or time cost,
given path constraints

1B. Sridhar et al., “Aircraft Trajectory Optimization and Contrails Avoidance in the
Presence of Winds”

M. Enriquez Systemizing the Solution of SDOs – 6

Problem Computations Numerical Results

Claim

Despite the variety of problems we can pose, the (numerical) approach to
solving [SD] requires similar steps, executed by the same components!

Why not “abstract” these steps/interactions, and capture it in a
framework?

Benefits of “systemization”:

I Reduced code base

I Consistency checks

I Easily switch between computational strategies

M. Enriquez Systemizing the Solution of SDOs – 7

Problem Computations Numerical Results

Solving the [SD]

M. Enriquez Systemizing the Solution of SDOs – 8

Problem Computations Numerical Results

“Optimize-then-Discretize” (OtD)

M. Enriquez Systemizing the Solution of SDOs – 9

Problem Computations Numerical Results

The Continuous Adjoint-State Method

Applying the optimality conditions to [SD], for t ∈ [0, T]:

Continuous State Equation:

du

dt
= H(u(t), c) u(0) ≡ 0

Continuous Adjoint Equation:

dw

dt
= −DuH(u(t), c)∗w(t) + Ju(u(t), c) w(T) ≡ 0

Gradient (w.r.t. L2 inner product):

∇f(c)(t) = DcH(u(t), c)∗w(t) + Jc(u(t), c)

M. Enriquez Systemizing the Solution of SDOs – 10

Problem Computations Numerical Results

“Discretize-then-Optimize” (DtO)

M. Enriquez Systemizing the Solution of SDOs – 11

Problem Computations Numerical Results

The Discrete Optimal Control Problem

Using a fixed time-stepping algorithm, the discretized analogue of [SD]:

[DSD] min
c

N∑
i=0

J [u(i), c]∆t

s.t. u(n+1) = u(n) + ∆t H̄(n)[u(n), c] n = 0, . . . , N

u(0) ≡ 0 ,

where H̄(n) is a (time-dependent) discrete dynamic operator. Note that
each u(n) ' u(tn) is called a (simulation/forward) state

M. Enriquez Systemizing the Solution of SDOs – 12

Problem Computations Numerical Results

Adjoint-State Methods (ASM)

Applying the optimality conditions to [DSD]:

[A] w(n) = w(n+1) + ∆t (DuH̄
(n)[u(n), c]∗w(n+1) + Ju[u(n), c])

w(N) ≡ 0

The gradient can then be obtained through the following accumulation

∆t
∑
n

DcH̄
(n)[u(n), c]∗w(n) + Jc[u

(n), c]

M. Enriquez Systemizing the Solution of SDOs – 13

Problem Computations Numerical Results

Visualizing the Adjoint-State Method

Introduce the forward grid (the grid used by the forward evolution) and
the adjoint grid (which will be used by the adjoint state method)

Note that [A] is dependent on state vector. Further, note that the state
vector must be accessed backwards

M. Enriquez Systemizing the Solution of SDOs – 14

Problem Computations Numerical Results

Visualizing the Adjoint-State Method

Once we complete the reference simulation, we can begin the adjoint
simulation. Start with the adjoint state’s (given) final value:

w(N) = 0

M. Enriquez Systemizing the Solution of SDOs – 15

Problem Computations Numerical Results

Visualizing the Adjoint-State Method

Then start the backward evolution by using the last adjoint state and a
corresponding forward state:

w(N−1) = w(N) + ∆t (DuH̄
(N−1)[u(N−1), c]∗w(N) + Ju[u(N−1), c])

M. Enriquez Systemizing the Solution of SDOs – 16

Problem Computations Numerical Results

Visualizing the Adjoint-State Method

Iterate through this process ...

w(N−2) = w(N−1) + ∆t (DuH̄
(N−2)[u(N−2), c]∗w(N−1) + Ju[u(N−2), c])

M. Enriquez Systemizing the Solution of SDOs – 17

Problem Computations Numerical Results

Visualizing the Adjoint-State Method

... to eventually generate all the adjoint states

w(0) = w(1) + ∆t (DuH̄
(0)[u(0), c]∗w(1) + Ju[u(0), c])

M. Enriquez Systemizing the Solution of SDOs – 18

Problem Computations Numerical Results

TSOpt (“Time Stepping For Optimization”)

TSOpt is “middle-ware” written in C++, designed to aid solution of
simulation-driven optimization problems

TSOpt:

I abstracts commonalities among time-stepping methods

I provides a way for a simulation package to inter-operate with
optimization algorithms

I supports use of the adjoint-state method

Motivating observation: for every simulation driven optimization
problem, the solution process is (mostly) the same:

I reference, linearized and adjoint simulation execution order

I constructing needed data structures for optimization

M. Enriquez Systemizing the Solution of SDOs – 19

Problem Computations Numerical Results

TSOpt (“Time Stepping For Optimization”)

M. Enriquez Systemizing the Solution of SDOs – 19

Problem Computations Numerical Results

TSOpt (“Time Stepping For Optimization”)

M. Enriquez Systemizing the Solution of SDOs – 19

Problem Computations Numerical Results

TSOpt (“Time Stepping For Optimization”)

M. Enriquez Systemizing the Solution of SDOs – 19

Problem Computations Numerical Results

TSOpt (“Time Stepping For Optimization”)

M. Enriquez Systemizing the Solution of SDOs – 19

Problem Computations Numerical Results

TSOpt (“Time Stepping For Optimization”)

M. Enriquez Systemizing the Solution of SDOs – 19

Problem Computations Numerical Results

TSOpt’s Components

In TSOpt, we use Jet objects to perform various simulations.

M. Enriquez Systemizing the Solution of SDOs – 20

Problem Computations Numerical Results

TSOpt’s Components

In TSOpt, we use Jet objects to perform various simulations.

M. Enriquez Systemizing the Solution of SDOs – 20

Problem Computations Numerical Results

Inversion Software Construction

TSOpt’s modular structure minimizes the amount of code needed to
perform an inversion

User:

I provides TSOpt with a forward, linearized, and adjoint “step”

I provide a “State” class

TSOpt:

I arranges proper execution forward, linearized and adjoint simulation

I implements the Adjoint-State method to form gradients

Output can be passed to optimization software

M. Enriquez Systemizing the Solution of SDOs – 21

Problem Computations Numerical Results

TSOpt and the Adjoint-State (AS) Method

Recall the ASM requires access to the reference simulation state history.
TSOpt implements the following to manage state storage:

I save all: save states as you forward simulate, access as needed
I Cost: A typical 3D RTM, O(TB)

M. Enriquez Systemizing the Solution of SDOs – 22

Problem Computations Numerical Results

TSOpt and the Adjoint-State (AS) Method

I Griewank’s optimal checkpointing: rely on forward simulations,
and use stored simulation states as a starting point for evolution

I Recomputation Ratio = Total Number of Forward Traversals /N
I Cost: O(log(N)) recomputation, given a special distribution of the

states and a small amount of buffers

M. Enriquez Systemizing the Solution of SDOs – 23

Problem Computations Numerical Results

Checkpointing, N = 10000

M. Enriquez Systemizing the Solution of SDOs – 24

Problem Computations Numerical Results

Simulation Verification

In order to obtain meaningful results from inversion, one must guarantee
that the gradient is accurate

Gradient quality depends on the adjoint states, which depends on:

I linearization of the reference equations

I adjoint of the linearization

TSOpt is capable of the following simulation verification (unit) tests:

I derivative test: compare linearized simulation to finite difference
approximation (using reference simulation)

I dot product test: give the linearized simulation operator A, adjoint
simulation operator A∗ and random control x and random state y,
check 〈Ax, y〉 − 〈x,A∗y〉 (Fixed timestep only)

M. Enriquez Systemizing the Solution of SDOs – 25

Problem Computations Numerical Results

Revisiting the Optimal Well Rate Allocation Problem

Given a reservoir model, along with location of injection and production
wells, find the optimal well rates to maximize revenue

1Images courtesy of www.amerexco.com/recovery

M. Enriquez Systemizing the Solution of SDOs – 26

Problem Computations Numerical Results

The Optimal Well Rate Allocation Problem

The optimal well rate allocation problem can be written as:

max
qi i∈I∪P

f(q) =

∫ T

0

dt
∑
i∈P

αsoqi(t)︸ ︷︷ ︸
profit, oil produced

−
∑
i∈P

β

2
saq

2
i (t)︸ ︷︷ ︸

water production penalty

−
∑
i∈I

γqi(t)︸ ︷︷ ︸
cost to inject

,

where α, β and γ are scalar variables and the aqueous pressure p and
aqueous saturation sa solve the Black Oil equations:

0 = B

(
sa(t),

dsa
dt
, p(t), q

)

M. Enriquez Systemizing the Solution of SDOs – 27

Problem Computations Numerical Results

The Black Oil Equations

I DE system that captures two-fluid inteactions in a porous medium
I Appropriate for low to moderate fluid flow

I Assumption: incompressible fluid and rock

−∇ · (K(x)︸ ︷︷ ︸
abs. perm.

λtot(sa(x, t))∇p(x, t)) =

∑
i∈P

(1− sa)qi(t)δ(x− xi) +
∑
i∈P∪I

saqi(t)δ(x− xi)

φ(x)︸︷︷︸
rock por.

∂

∂t
sa(x, t)−∇ · (K(x) λa︸︷︷︸

phase mob.

(sa(x, t))∇p(x, t)) =

∑
i∈P∪I

saqi(t)δ(x− xi)

M. Enriquez Systemizing the Solution of SDOs – 28

Problem Computations Numerical Results

Fully Discretized Problem
After using a Finite Volume method in space and Bwd. Euler in time:

min f̄(q) =

N∑
k=1

∆t J̄(k, s(k)a , q)

s.t. eT q = 0

qmin ≤ qi ≤ qmax

where s
(k+1)
a and p(k+1) solve:[

F (. . .(k+1) , q)
G(. . .(k+1) , q)

]
:=

[
q(k+1) −A(t)p(k+1)

D−1(q(k+1) −A(a)p(k+1))

]
=

[
0

s(k+1)
a −s(k)

a

k

]

where the matrices A(θ) and D are defined as:

Di,i = φi · |Ωi| Ti,j = cKi,j

A
(θ)
i,j = −Ti,jλθi,j Ai,i =

∑
j

Ti,jλθi,j

M. Enriquez Systemizing the Solution of SDOs – 29

Problem Computations Numerical Results

The Adjoint Equations

Simultaneously solve for the adjoint variables w
(k)
s and w

(k)
p in the

following equation:

−w
(k+1)
s − w(k)

s

k
= DsF (. . .(k))Tw(k)

s −DsG(. . .(k))Tw(k)
p −∇sJ̄(. . .(k))

0 = −DpF (. . .(k))Tw(k)
s +DpG(. . .(k))Tw(k)

p

The directional derivative can then be obtained from the following
expression:

∇J(q)(k) = ∇qJ̄(·(k))−DqF (. . .(k))Tw(k)
s +DqG(. . .(k))Tw(k)

p

M. Enriquez Systemizing the Solution of SDOs – 30

Problem Computations Numerical Results

Simulation Information

I SPE10 data for porosity and permeability (left)

I Location of Injecting/Producing Wells (right)

I Grid Cell Size: 10× 20 feet

M. Enriquez Systemizing the Solution of SDOs – 31

Problem Computations Numerical Results

Reference Simulation Results
Saturation plot for t = 25 days

0 20 40
0

50

100

150

200

0.30

0.35

0.40

0.45

0.50

M. Enriquez Systemizing the Solution of SDOs – 31

Problem Computations Numerical Results

Reference Simulation Results
Saturation plot for t = 50 days

0 20 40
0

50

100

150

200

0.30

0.35

0.40

0.45

0.50

0.55

M. Enriquez Systemizing the Solution of SDOs – 31

Problem Computations Numerical Results

Reference Simulation Results
Saturation plot for t = 75 days

0 20 40
0

50

100

150

200

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M. Enriquez Systemizing the Solution of SDOs – 31

Problem Computations Numerical Results

Reference Simulation Results
Saturation plot for t = 100 days

0 20 40
0

50

100

150

200

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M. Enriquez Systemizing the Solution of SDOs – 31

Problem Computations Numerical Results

Reference Simulation Results
Saturation plot for t = 125 days

0 20 40
0

50

100

150

200

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M. Enriquez Systemizing the Solution of SDOs – 31

Problem Computations Numerical Results

Reference Simulation Results
Saturation plot for t = 150 days

0 20 40
0

50

100

150

200

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M. Enriquez Systemizing the Solution of SDOs – 31

Problem Computations Numerical Results

Reference Simulation Results
Saturation plot for t = 175 days

0 20 40
0

50

100

150

200

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M. Enriquez Systemizing the Solution of SDOs – 31

Problem Computations Numerical Results

Reference Simulation Results
Saturation plot for t = 200 days

0 20 40
0

50

100

150

200

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M. Enriquez Systemizing the Solution of SDOs – 31

Problem Computations Numerical Results

Inversion Information

Computational Software:

I Simulation: BlackOil simulator

I TSOpt to handle simulation execution, gradient construction

I Optimization: IPOpt, “Interior-Point Optimizer”

Inversion:

I Find optimal well-rate configuration over 200-day timespan
I Time step size: ∆t = 25d

I LBFGS Hessian approximation

I Globalization: Linesearch

I Wellrate bounds: [0, 20] bbl/day

I Initial guess: 10 bbl/day for all wells

I Stopping Tolerance: 0.10 (NLP Error)

M. Enriquez Systemizing the Solution of SDOs – 32

Problem Computations Numerical Results

Objective Function

M. Enriquez Systemizing the Solution of SDOs – 33

Problem Computations Numerical Results

Control History

M. Enriquez Systemizing the Solution of SDOs – 34

Problem Computations Numerical Results

Conclusion

TSOpt: Modular C++ framework aiding inversion software construction

I Systemizes process of solving SDO problems by
encapsulating/automating common actions

I Reduces code required to successfully perform inversion

TSOpt Features:

I Easily switch between strategies for gradient formation

I Supports fixed and adaptive simulations

I Includes “sanity tests”: derivative and dot-product test

M. Enriquez Systemizing the Solution of SDOs – 35

Problem Computations Numerical Results

Conclusion

Open question:

I Are there tests for the components which, if passed, would
guarantee the local solution of [SD] will be attained?

Read more about TSOpt:

I Tech Report:
http://www.caam.rice.edu/tech reports/2009/TR0933.pdf

I Doxy:
http://www.trip.caam.rice.edu/software/rvl . . .

. . ./tsopt/doc/html/index.html

M. Enriquez Systemizing the Solution of SDOs – 36

Problem Computations Numerical Results

Questions?

M. Enriquez Systemizing the Solution of SDOs – 37

	Problem
	Computations
	Numerical Results

